Rigidity properties of the hypercube via Bakry–Émery curvature
نویسندگان
چکیده
Abstract We give rigidity results for the discrete Bonnet–Myers diameter bound and Lichnerowicz eigenvalue estimate. Both inequalities are sharp if only underlying graph is a hypercube. The proofs use well-known semigroup methods as well new direct which translate curvature to combinatorial properties. Our can be seen first known analogues of Cheng’s Obata’s theorems.
منابع مشابه
control of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولinvestigation of effective parameters on the rigidity of light composite diaphragms (psscb) by fem
در این رساله با معرفی سقف های psscb متشکل از ترکیب ورق های فولادی ذوزنقه ای و تخته های سیمانی الیافی به عنوان سقف های پیش ساخته (سازگار با سیستم سازه ای قاب های فولادی سبک) به بررسی پارامترهای موثر بر صلبیت سقف، پرداخته می شود. در تحقیق حاضر ابتدا به مدل سازی دو نمونه سقف آزمایش شده، به روش اجزاء محدود با استفاده از نرم افزار تحلیلی abaqus ver 6.10 پرداخته شده است. نمونه های ساخته شده تحت اعما...
new semigroup compactifications via the enveloping semigroups of associated flows
this thesis deals with the construction of some function algebras whose corresponding semigroup compactification are universal with respect to some properies of their enveloping semigroups. the special properties are of beigan a left zero, a left simple, a group, an inflation of the right zero, and an inflation of the rectangular band.
15 صفحه اولRigidity in Non-negative Curvature
In this paper we will show that any complete manifold of nonnegative curvature has a flat soul provided it has curvature going to zero at infinity. We also show some similar results about manifolds with bounded curvature at infinity. To establish these theorems we will prove some rigidity results for Riemannian submersions, eg., any Riemannian submersion with complete flat total space and compa...
متن کاملMeasure Rigidity of Ricci Curvature Lower Bounds
The measure contraction property, MCP for short, is a weak Ricci curvature lower bound conditions for metric measure spaces. The goal of this paper is to understand which structural properties such assumption (or even weaker modifications) implies on the measure, on its support and on the geodesics of the space. We start our investigation from the euclidean case by proving that if a positive Ra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Annalen
سال: 2022
ISSN: ['1432-1807', '0025-5831']
DOI: https://doi.org/10.1007/s00208-022-02537-y